Corsi proposti dalla sezione INGV di Pisa

AA 2023-2024

 

FEDERICO BROGI, SIMONE COLUCCI, CHIARA MONTAGNA (federico.brogi@ingv.it, simone.colucci@ingv.it, chiara.montagna@ingv.it)
Multiphase flows and Computational Fluid Dynamics for Earth Sciences ((24 ore, 3 CFU)
(SETTEMBRE-OTTOBRE 2023, DATA DA CONCORDARE CON I DOCENTI)


Lessons: 2 hours in the morning and 2 in the afternoon, three times per week, for two weeks. Attendance of 75% of the lessons is required to obtain the associated CFU.
A minimum number of students is required to activate the class. The students must notify the participation before the end of March.

Advanced class on multiphase flow modelling with hands-on exercises (computational fluid dynamics for geophysical problems with OpenFOAM®).
Introduction to Computational
Fluid Dynamics for Earth Sciences is highly recommended as a preparatory course.
A personal laptop is needed.
Syllabus

Theory (T) and exercises (L) with OpenFOAM
for multiphase flows
T1. Introduction to the theory of multiphase flows.
L1. Introduction and first exercises with the OpenFOAM library.
T2. Derivation of the multi-fluid flow equations.
L2. Numerical simulations with multi-fluid solvers for gas-liquid, gas-particle and liquid-particle flows.
T3 Fluid-Fluid interface resolved simulations.
L3. Numerical experiments on the dynamics of large gas bubbles.
T4. The mixture model for multiphase flows.
L4. Numerical simulations of mixture flow: the example of magma mingling.
T5. An Ordinary Differential Equation (ODE) to model bubble dynamics: the Rayleigh Plesset Equation.
L5. Implementation and use of an ODE to study bubble growth in magmas with the aid of the MagmaFOAM library.
T6. Eulerian-Lagrangian solver with ODE models: examples for gas-liquid flows.
L6. Numerical simulations of rising magma with growing bubbles with the aid of the MagmaFOAM library.

 

CHIARA MONTAGNA e PAOLO PAPALE (chiara.montagna@ingv.it, paolo.papale@ingv.it)
Termodinamica delle miscele multifase ed applicazioni ai magmi (8 ore; 1 CFU)
(MARZO-APRILE 2023, DATA DA CONCORDARE CON I DOCENTI)

L’evoluzione delle proprietà fisiche e chimiche dei magmi durante la risalita dal mantello attraverso la crosta terrestre è descritta dalle complesse relazioni termodinamiche che regolano le miscele multifase e multicomponente. Partendo dai principi fondamentali della termodinamica, il corso fornirà agli studenti le basi per lo studio degli equilibri chimici e di fase in miscele fluide, con particolare riferimento ai sistemi magmatici composti da liquido silicatico, volatili e cristalli, per i quali verranno proposte applicazioni realistiche. Il corso è strutturato in 4 lezioni, ciascuna della durata di 2 ore.
- Termodinamica Classica: le grandezze ed i principi della termodinamica classica, potenziali ed energie libere, equilibri termodinamici (2 ore);
- Termodinamica delle miscele: definizione di miscela, miscele ideali e miscele reali, energie e potenziali in eccesso, equilibrio, fugacità ed attività, legge di Henry, (4 ore);
- Applicazione alle miscele magmatiche: modellizzazione degli equilibri liquido silicatico-cristalli-volatili e loro implicazioni per le dinamiche dei sistemi vulcanici; esempi di utilizzo di software dedicato (MELTS, SOLWCAD) (2 ore).

GILBERTO SACCOROTTI (gilberto.saccorotti@ingv.it)
Inverse problems and parameter estimation (8 hours, 1 CFU)
(9-10 MAGGIO 2023)

A brief overview of the methods and issues associated with the inference of the parameters characterising a given physical system, with MatlabR examples for some classical problems in geophysics and seismology.
PI1. An introduction to inverse problems. Definitions and Classification; elements of linear algebra and probability theory.
PI2. The linear inverse problem. Experimental data, measurement errors, error propagation. The least-square solution for the linear, over-determined problem.
PI3. Rank-deficient and ill-conditioned problems. The minimum-length solution; the damped least-squares solution and other regularisation techniques.
PI4. Working examples. Down-hole seismic profiling, spectral division (deconvolution), direct-search earthquake location.

 

MATTIA DE’ MICHIELI VITTURI, TOMASO ESPOSTI ONGARO (mattia.demichielivitturi@ingv.it, tomaso.espostiongaro@ingv.it)
Introduction to Computational Fluid Dynamics for Earth Sciences (24 ore, 3 CFU)
(FEBBRAIO/MARZO 2023 DATA DA CONCORDARE CON I DOCENTI; orario: 3 ore mattina e pomeriggio. E’ richiesta la presenza almeno al 75% delle lezioni per ottenere i crediti associati al corso)

General introductory class, with application to Volcanology and laboratory exercises with OpenFOAM® (personal laptop needed)
Syllabus
Introduction to fluid dynamic modelling for Volcanology and Earth Sciences.
FLU1. Fluid transport models: Eulerian and Lagrangian approaches. Examples.
FLU2. From the transport theorem to the Navier-Stokes equations.
FLU3. Mathematical aspects of fluid dynamic models. Implications for their numerical solution.
FLU4. Multiphase flows.

Introduction to Computational Fluid Dynamics
CFD1. Spatial and temporal discretization: the Finite Difference method
CFD2. Spatial and temporal discretization: the Finite Volume method
CFD3. Solution methods: the segregated approach.
CFD4. Pressure-correction algorithms.

Introduction to the OpenFOAM software.
OF1. Introduction to OpenFOAM: a practical approach. Software architecture, installation and quick start. Tutorial: incompressible flows.
OF2. Creating a new solver in OF. Tutorial: Temperature-dependent viscous flows.
OF3. Miscible and immiscible multiphase flows in OF.
OF4. Lagrangian particle tracking in OF. Tutorial: coupling regimes in gas−particle flows.